Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 387, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664746

RESUMEN

BACKGROUND: Integrating quantitative trait loci (QTL) data related to molecular phenotypes with genome-wide association study (GWAS) data is an important post-GWAS strategic approach employed to identify disease-associated molecular features. Various types of molecular phenotypes have been investigated in neuropsychiatric disorders. However, these findings pertaining to distinct molecular features are often independent of each other, posing challenges for having an overview of the mapped genes. METHODS: In this study, we comprehensively summarized published analyses focusing on four types of risk-related molecular features (gene expression, splicing transcriptome, protein abundance, and DNA methylation) across five common neuropsychiatric disorders. Subsequently, we conducted supplementary analyses with the latest GWAS dataset and corresponding deficient molecular phenotypes using Functional Summary-based Imputation (FUSION) and summary data-based Mendelian randomization (SMR). Based on the curated and supplemented results, novel reliable genes and their functions were explored. RESULTS: Our findings revealed that eQTL exhibited superior ability in prioritizing risk genes compared to the other QTL, followed by sQTL. Approximately half of the genes associated with splicing transcriptome, protein abundance, and DNA methylation were successfully replicated by eQTL-associated genes across all five disorders. Furthermore, we identified 436 novel reliable genes, which enriched in pathways related with neurotransmitter transportation such as synaptic, dendrite, vesicles, axon along with correlations with other neuropsychiatric disorders. Finally, we identified ten multiple molecular involved regulation patterns (MMRP), which may provide valuable insights into understanding the contribution of molecular regulation network targeting these disease-associated genes. CONCLUSIONS: The analyses prioritized novel and reliable gene sets related with five molecular features based on published and supplementary results for five common neuropsychiatric disorders, which were missed in the original GWAS analysis. Besides, the involved MMRP behind these genes could be given priority for further investigation to elucidate the pathogenic molecular mechanisms underlying neuropsychiatric disorders in future studies.


Asunto(s)
Metilación de ADN , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Trastornos Mentales , Fenotipo , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Trastornos Mentales/genética , Metilación de ADN/genética , Análisis de la Aleatorización Mendeliana , Transcriptoma/genética
2.
Mol Psychiatry ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684796

RESUMEN

N6-methyladenosine (m6A) methylation regulates gene expression/protein by influencing numerous aspects of mRNA metabolism and contributes to neuropsychiatric diseases. Here, we integrated multi-omics data and genome-wide association study summary data of schizophrenia (SCZ), bipolar disorder (BP), attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD) to reveal the role of m6A in neuropsychiatric disorders by using transcriptome-wide association study (TWAS) tool and Summary-data-based Mendelian randomization (SMR). Our investigation identified 86 m6A sites associated with seven neuropsychiatric diseases and then revealed 7881 associations between m6A sites and gene expressions. Based on these results, we discovered 916 significant m6A-gene associations involving 82 disease-related m6A sites and 606 genes. Further integrating the 58 disease-related genes from TWAS and SMR analysis, we obtained 61, 8, 7, 3, and 2 associations linking m6A-disease, m6A-gene, and gene-disease for SCZ, BP, AD, MDD, and PD separately. Functional analysis showed the m6A mapped genes were enriched in "response to stimulus" pathway. In addition, we also analyzed the effect of gene expression on m6A and the post-transcription effect of m6A on protein. Our study provided new insights into the genetic component of m6A in neuropsychiatric disorders and unveiled potential pathogenic mechanisms where m6A exerts influences on disease through gene expression/protein regulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...